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An asymptotic method is presented for the analysis of the traveling waves in the one-dimensional reaction-
diffusion system with the diffusion with a finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics. The
analysis makes use of the path-integral approach, scaling procedure, and the singular perturbation techniques
involving the large deviations theory for the Poisson random walk. The exact formula for the position and
speed of reaction front is derived. It is found that the reaction front dynamics is formally associated with the
relativistic Hamiltonian/Lagrangian mechani¢$1063-651X98)14710-4
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Phenomena of the wave propagation in nonequilibrium ap 9
media described by reaction-diffusion equations have at- 1T o~ Ue(l-p), (1)
tracted considerable interest in a wide variety of scientific
fields including physics, chemistry, biology, etc. Excellent EX| J-Jo ap
reviews of the work in this area can be found in the books o Jo=- D&_x’ 2

[1-4]. Of fundamental interest is the rate at which the wave

propagates through the nonlinear dissipative system. The bashere U is the reaction rate constant corresponding to the
sic common feature in many examples is that the transpoKPP kinetics,D is the diffusion coefficient corresponding to
process determining the propagation rate is described by theick’s law, andr is the relaxation time. Whek) =0, the
conventional diffusionFick’s law). In this case the propa- system(1),(2) reduces to the telegraph equati@n-10]

gation velocityu can be found from a simple dimensional

analysis, that isu~ DU, whereD is the diffusion coeffi- (92_P+ 5_P_DF7Z_P 3)
cient andU is the characteristic reaction rate constant. T otz dt o gx2

It is well known that the diffusion approximation gives
rise to the infinite speed of heat/mass propagation, that is, When =0, we have the classical KPP equatidr-4]
a sudden change of temperature/concentration takes place
somewhere in the space, it will be felt immediately every- ap P*p
where with an exponentially small amplitude. It is therefore 7t P ﬁjL Up(1=p). (4)
desirable to have a theory for nonlinear wave propagation in
which the boundness of the transport process would be taken If we now solve Eq.(2) with the initial conditionJ(0,x)
into account. The purpose of this paper is to present such a0 we may eliminate] from Eq. (1) to obtain the single
theory giving an asymptotic method for calculating theequation forp,
propagation speed for the traveling wave in the reaction-
diffusion system involving the diffusion with a finite velocity dp D[t t—s) 9%p(s,X)

[5—10 and the chemical kinetics of Kolmogorov-Petrovskii- gt 7[0 ex;{ - T)TdSJF Up(l=p). (9
Piskunov(KPP) type[1-4,11-1T.

Our starting point is a phenomenological system of thethjs equation may be considered as a generalization of the
one-dimensional equations for the time evolution of the scaxpp equatior(4) to the case in which the finite speed of the
lar field p and its fluxJ, transport process is taken into account:Q).

We specify the following initial condition:

*Electronic address: fedotov@pik-potsdam.de p(0,X)=6(x), (6)
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where 6(x) is a Heaviside functiord(x)=1 for x<0 and
0(x)=0 for x>0.

The basic problem is to find the traveling wave solution
(x—ut) to the problem(5),(6), wherey(z) is a monotoni-
cally decreasing function such thai{ —o)=1 and i(x)
=0, andu is the speed at which the wave profilemoves in
the positivex direction. For the KPP equatio®) (7=0)
with the initial condition(6) the traveling wave moves with
the velocityu=+4DU [1-4]. We expect that for Eq95)
and(6) the speedi= 4DUf(7U), wheref(z) is the dimen-
sionless function such thd(0)=1. It should be noted that
our method of calculation will be nonperturbative in the
sense that we do not treat the relaxation timas a small
parameter.

We are interested in the long-time large-distance behavior

of the traveling wave solution of Eq$5) and (6) ast—
and x—o . It is convenient therefore to make the scaling
[12-17
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@“(0x)= 0(x).

Our strategy to find the functioB(t,x) is to analyze the
above Cauchy problem in terms of the probability theory and
thereby to obtain an estimate @f(t,x) in the limit e—0.
The basic idea is that we can deal with the probl@r®) in
terms of the random walks of Poisson type-9]. If we
introduce the notations (velocity) and v (frequency such
that

(12

2_

1
c?=—, 2w=U+-, (13)

then the solution of linear initial value probleth2) can be
written as an expectation value of the initial distributién
[718]!

@"(t,x) =E0(x(1)), (14

wheree is a small parameter, and rewrite the Cauchy probWhereE is the expectation operator andt) is a random

lem (5),(6) for p®(t,x)=p(t/e, x/e) in the following form:

=_f ;{ t— s)az 8(sx)ds

p?(0,x) = 6(X).

+ ps(l p°), )

It is clear from this equation that the scalifif) describ-

Poisson walk, i.e., a solution of the stochastic differential
equation
(s
=0
&

wherewv(s) is the Markovian dichotomous velocity taking
only two valuesc, — c} with the frequency [18]. From the
probabilistic point of view the key factor underlying the non-
local character of Eq(12) is that the dynamics ok(t) is

dx
ds

x(0)=x, 0<s<t (15

ing a simultaneous contraction of time and space alternaaon-Markovian[18]. To obtain an estimate af*(t,x) ase
tively corresponds to the rapid chemical reaction and slow—0 we need to know an explicit expression tgi(t,x) as a
transport process. We expect that after rescaling the waveath integral19],

profile develops into the reaction fronf®(t,x)= [ (x
—ut)/e)] tends to a unit step functiof(x—ut) ase—0.

Our goal is now to find a functio(t,x) determining the
position of the reaction front, that is,

|

0 ifG(t,x)<0

lim p®(t,x)= .
p(tX) 1 otherwise.

e—0

©)

¢s(t,X)=f 6(x(t))P[x(-)]Dx, (16)

whereP[ x(-)] is a conditional probability density functional
for the random procesg(s),

__v(

Px(-)]= f Plv(-)]Dv,

In this paper we restrict ourselves to finding the upper

bound forp®(t,x) in the form

pg(t,x)sexp‘

Sincep?®(t,x) varies in the interval0,1] it is clear from Eq.
(10) that p®(t,x)—0 if G(t,x)<0, e—0.
It follows from the property of the KPP kinetics in E®)

that
Ut
pg(t,X)<¢s(t,X)exp<;>,

where ¢®(t,x) is a solution of the linear initial problem

G(t,x)
. (10)

] as &£—0.

(11)

where § - ] is the § functional that is the extension of the
ordinary & function to the functional integratiofl9]. By

using Eq.(16) and the formalism based on the auxiliary
functionu [20,21] we can write down the following expres-

sion for ¢®(t,x):
o°(t,x)= fffe(x )exp[ fu(s)——v(s) ]
17
In the “weak noise limit” ¢ —0 one can get the following

X P[v(-)]Dv Du Dx.
estimate forp®(t,x) (the details of calculation involving the
large deviations theory for the Poisson random walk will
appear elsewhere
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e(t,x)~ex —E min jt< dX—H( ))
e €5(0)=x;x(1)=07 0 Pds P
(18

where the functionH(p) has the form of the relativistic
Hamiltonian[22]

H(p)=cym?c?+p?— v, (19

with the “effective mass”m=wvc~ 2. One can rewrite Eq.
(18) in terms of the relativistic Lagrangidr22]

sx(O):x;x(t):O 0

L= 2/1 1dx2+ 21
=—m _Ed_s V. ( )

1 t
<p8(t,x)~exp| ——  min f L dsJ , (20

where

Taking into account Eq13) the speed of the reaction froat
can be rewritten in terms of the phenomenological param-
etersD and 7,

FU<1. (24)

We suggest that= D/ whenrU>1. It follows from Egs.
(23) and (24) that the speed takes the maximum value
=\D/7, when7U=1 or U= . If the velocity of propaga-
tion ¢ were infinitely great and the time were infinitely
small such thaD = c?7= const(the diffusion approximation
for the random walk of Poisson typeEq. (23) would merely
give u=+4DU—the classical result of the KPP theory
[1-4].

In summary, we have derived thexactformula for the
position and speed of the reaction front in the one-

We are now in a position to complete the derivation of thedimensional dissipative system involving the diffusion with a

function G(t,x) determining the reaction front position and

finite velocity and the KPP kinetics. It has been found that

its speed. One finds after straightforward calculation that thé¢he reaction front dynamics for such a system can be for-

optimal trajectory giving the minimum in Eq20) is x(s)
— (x/t)s+x and the corresponding minimal action is

—mczt\/ — (1/c?) (x/t)%+ vt By using Eqs(10), (11), and

(20) and the relatiom= vc~? we obtain
1(x\2
G(t,x)=Ut—pt+ vt 1——2 - . (22
c2\t

EquatingG(t,x) to 0 we obtain the position of reaction
front x(t),

v—U
X(t)=ut, u=c 1—( ) Usp. (23

mally associated with the relativistic Hamiltonian/
Lagrangian mechanics. There are several possible directions
to explore by the method developed here. First one may
study the influence of nonuniform distribution of the reaction
rate constant) which might induce the jumps of reaction
fronts[11]. One can also extend the analysis to describe the
interaction between the turbulent diffusion with a finite ve-
locity [10] and the KPP kinetics in the three-dimensional
spaceg 17].
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